Superconductivity induced by Ag intercalation in Dirac semimetal Bi2Se3

نویسندگان

چکیده

Superconductivity in a doped topological insulator (TI) is very interesting phenomenon and constitute new finding of the modern day condensed matter physics. Here we have investigated physical transport properties such an intercalated TI, namely, Bi$_2$Se$_3$ via strong coupling route. The unique bandstructure Bismuth Selenide with dirac cone strongly influenced intercalation by Silver (Ag) (Gold (Au) included to compare contrast) at high densities, along novel structural effects, leading emergence orbital selective metal transition possible superconductivity low temperature. explored part multi electron correlations Ag Au dynamical-mean-field theory local density approximation, impact this establishing energy applications.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dirac semimetal in three dimensions.

We show that the pseudorelativistic physics of graphene near the Fermi level can be extended to three dimensional (3D) materials. Unlike in phase transitions from inversion symmetric topological to normal insulators, we show that particular space groups also allow 3D Dirac points as symmetry protected degeneracies. We provide criteria necessary to identify these groups and, as an example, prese...

متن کامل

Terahertz-induced acceleration of massive Dirac electrons in semimetal bismuth

Dirac-like electrons in solid state have been of great interest since they exhibit many peculiar physical behaviors analogous to relativistic mechanics. Among them, carriers in graphene and surface states of topological insulators are known to behave as massless Dirac fermions with a conical band structure in the two-dimensional momentum space, whereas electrons in semimetal bismuth (Bi) are ex...

متن کامل

Dirac and Weyl Semimetal in XYBi (X = Ba, Eu; Y = Cu, Ag and Au)

Weyl and Dirac semimetals recently stimulate intense research activities due to their novel properties. Combining first-principles calculations and effective model analysis, we predict that nonmagnetic compounds BaYBi (Y = Au, Ag and Cu) are Dirac semimetals. As for the magnetic compound EuYBi, although the time reversal symmetry is broken, their long-range magnetic ordering cannot split the Di...

متن کامل

Inducing superconductivity in Weyl semimetal microstructures by selective ion sputtering

By introducing a superconducting gap in Weyl or Dirac semimetals, the superconducting state inherits the nontrivial topology of their electronic structure. As a result, Weyl superconductors are expected to host exotic phenomena, such as nonzero-momentum pairing due to their chiral node structure, or zero-energy Majorana modes at the surface. These are of fundamental interest to improve our unde...

متن کامل

Superconductivity in Weyl semimetal candidate MoTe2.

Transition metal dichalcogenides have attracted research interest over the last few decades due to their interesting structural chemistry, unusual electronic properties, rich intercalation chemistry and wide spectrum of potential applications. Despite the fact that the majority of related research focuses on semiconducting transition-metal dichalcogenides (for example, MoS2), recently discovere...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Materials Science

سال: 2022

ISSN: ['1879-0801', '0927-0256']

DOI: https://doi.org/10.1016/j.commatsci.2021.110989